It's the wrong data analysis

Adrian Barnett ♥@aidybarnett

Australian Centre for Health Services Innovation (AusHSI) Queensland University of Technology

November 2015

Adrian Barnett (AusHSI)

Latest research Happy birthday

Image from Stuart Miles FreeDigitalPhotos.net

Hospital food

Image from Sura Nualpradid FreeDigitalPhotos.net

- Patients who had the most inter-hospital transfers stayed twice as long
- Length of stay was 17.4 days for patients with hospital-acquired complications and 5.4 days for other patients
- ▶ Nosocomial infections multiplied length of hospital stay by 2.9

Bias of ignoring time

Cross-sectional

Admitted

Infection

Discharge

Time

Adrian Barnett (AusHSI)

Bias of ignoring time Time ordered

Time

Adrian Barnett	(AusHSI)
----------------	----------

Bias of ignoring time Same extra length of stay due to infection

Something happened

Experiment starts from the change

Something happened

Experiment starts from the change

New row for every change

Patient	From	То	Start	End
1	Admitted	Discharged	0	4
2	Admitted	Infected	0	3
2	Infected	Discharged	3	6
:	:	:	:	÷

▶ Then use survival analysis

- Cox regression (direct causes)
- Cumulative risk curves (indirect causes)

New row for every change

Patient	From	То	Start	End
1	Admitted	Discharged	0	4
2	Admitted	Infected	0	3
2	Infected	Discharged	3	6
:		:	÷	÷

▶ Then use survival analysis

- Cox regression (direct causes)
- Cumulative risk curves (indirect causes)

Example

Does old blood cause infections?

- Only patients with at least one transfusion
- Only red cell transfusions
- ▶ Blood age ranged from 0 to 42 days
- ▶ 147,308 patients, just 224 infections

Image courtesy of rajcreationzs at FreeDigitalPhotos.net

Cumulative risks

Hazard ratios and 95 percent confidence intervals for 10 day increase in blood age

	Mean	95% CI	P-value		
Before 20 days					
Infection	0.954	0.828, 1.099	0.512		
Transfusion	0.899	0.893, 0.905	< 0.001		
Discharge	1.015	$1.010, \ 1.020$	< 0.001		
After 20 days					
Infection	1.173	0.926, 1.487	0.187		
Transfusion	1.430	1.406, 1.455	< 0.001		
Discharge	0.924	0.912, 0.937	< 0.001		

Confounding and time

Confounding and time

Risk score is not a confounder

Confounding and time

Risk score is a potential confounder

Regression to the mean

Random events

Random events

Regression to the mean

Regression to the mean

- Review of published re-analysis of RCT data
- ► Thirteen reanalyses (35%) led to interpretations different from that of the original article (95% CI: 20% to 53%)
- Likely much worse in observational data

Image from vectorolie FreeDigitalPhotos.net

Ebrahim et al JAMA 312(10)

- Review of published re-analysis of RCT data
- ► Thirteen reanalyses (35%) led to interpretations different from that of the original article (95% CI: 20% to 53%)
- Likely much worse in observational data

Image from vectorolie FreeDigitalPhotos.net

Ebrahim et al JAMA 312(10)