Postgraduate Education and Infection Control

Professor Ramon Shaban

Professor, Infection Prevention and Control
Acting Head, School of Nursing and Midwifery
Notice of Disclosure and Provenance
Dr Shaban is:
• Professor of Infection Prevention and Control at Griffith University and Gold Coast University Hospital and Health Service
• Director, Griffith Graduate Infection Control Program at Griffith University, and offers suite of tertiary programs from Graduate Certificate through to Doctor of Philosophy
• President, ACIPC
• Former CAPS Chair and Member
• Editor-in-Chief, Australasian Emergency Nursing Journal
Health and Care...

- To reduce mortality and morbidity
- Alleviate pain and suffering
- Make better the lives of others
- Context matters
- Hospital, Community traditions...
- Healthcare-associated infection, communicable disease...
- Hospital vs. Community-acquired...
- The challenges of “where”
- What is a medical or health “emergency”
Emergency care?

- What’s different about emergency care?
- What do this mean for infection prevention and control, managing infection, and communicable diseases?
What are the challenges?

- Time
- Numbers of patients
- Acuity of patients
- Poor predictability
- “Rubber walls”
- Uncertainty
- Limited previous assessment/treatment/diagnosis
- Ambulance Ramping
- Access Block, Overcrowding
- Communication challenges and difficulties
- Expectations
- Disasters
- Events within the hospital
- Variable settings and resources
- Open all hours
- And on and on and on...
Issues of interest…

- **Wound care and MDROs**
 - Sepsis
 - Shifting patterns of care from inpatient to community = more complex wounds

- **Gastrointestinal diseases**
 - Norovirus, Cholera, Hepatitis A

- **Respiratory Infections**
 - Influenza, Community-acquired pneumonia

- **Communicable real-world “Pandemics”**
 - MERS-CoV, Ebola, Measles
Pandemics... Nothing new?

- 1890 H2N?
- 1900 H3N8
- 1918 H1N1 (Spanish Flu)
- 1957 H2N2 (Asian Flu)
- 1968 H3N2 (Hong Kong Flu)
- 1977 H3N2 H1N1 (Russian Flu)
- 1997 H5N1 (Avian Flu)
- 2009 H1N1 (Swine Flu)

What was different about H1N1 2009?

Emergency Departments had a primary public health response....
Many Australian Government agencies have a role to play during significant emergencies in Australia and the surrounding region. The Department of Health and Ageing, in collaboration with the Australian Health Protection Committee (AHPC) and in cooperation with relevant state and territory health authorities, as specific coordination responsibilities in the event of national health emergencies.

Health emergencies include:

- significant communicable disease outbreaks, e.g. an influenza pandemic
- chemical, biological or radiological incidents either criminal or accidental
- mass casualty incidents, e.g. an earthquake or transport accident
- any emergency where there are a significant number of people needing medical treatment which requires a coordinated national approach
- any emergency where a contingent of Australian medical personnel is required for deployment

During health emergencies this web site will be updated to communicate situational information, important health messages, and other health related response arrangements.
Pandemic (H_1N_1) 2009 Influenza Outbreak in Australia: Impact on Emergency Departments.

Background

- EDs are at the forefront of Australia’s health disaster response
 - immediate patient care
 - system-wide patient facilitation
- Pandemic (H1N1) 2009 Influenza presented Australian EDs with
 - challenges relating to diversity of roles in disease containment & management
 - opportunity to describe the extended clinical impact of pandemic disease
- Major impact of ED function...
Lessons and Recommendations

1. There is a need for a single authoritative source of information and lead agency for response that is well regarded. **Consistent, timely, accurate messaging** required to avoid confusion, which is more likely to cause injury to patients and adversely impact ED staff.

2. **Information should be provided in an organised and consistent format, regardless of the means of distribution.** Multiple means are necessary, but a consistent message is vital. A simplified ‘state-of-the-art’ summary re-issued regularly, and published in juxtaposition with only the more recent updates will promote communication for during pandemics.

3. There is a need for **active engagement and collaboration with the media and for clinicians to aid this process by disciplined approaches.** Appropriate communication strategies are needed that reflect local engagement. However, this process must also take cognisance of the need for consistent information.
Lessons and Recommendations

4. **Standardised clinical approaches are critical.** Guidelines need to be issued, and in the case of Pandemic (H1N1) 2009 Influenza were found to be very useful. Standardised approaches to triage are necessary to ensure consistency in assessment. EDs need to review their management of infectious patients. Guidelines for managing infectious patients in EDs should be reviewed and include managing infectious patients in a pandemic.

5. **Policies regarding the establishment of flu clinics should be in place and strategies determined for rapid implementation when an outbreak occurs.** All services, including pre-hospital services, should be engaged in the development and approval of these policies and strategies.

6. **ED design reviewed** to determine how to better accommodate infectious patients during a pandemic and on an every-day basis.
Lessons and Recommendations

7. **ED infection control procedures** and the related behaviours of ED staff in both normal and emergency situations must be reviewed.

8. There is a need to address a **range of occupational health and safety issues including leave, immunisation, infection control, and entitlements to compensation**.

9. **Clinical supplies required during a pandemic must be identified, and strategies designed to ensure access and availability**. These include embedded stockpiles and dedicated stockpiles.

10. **Standard policies for PPE and antiviral agents** must be developed consistently applied.

11. Strategies to create **surge capacity** within EDs for staff, equipment, physical space and stores need to be identified.
Lessons and Recommendations

12. Peer and local support strategies should be developed to ensure staff feel their needs are provided for, thereby creating resilience, dependability, and stability in the ED workforce. These strategies also need to identify mechanisms for peer support and need to address staff resilience and psychological first aid.

13. Planning frameworks should be reviewed to clarify the relationship between pandemic plans and disaster plans.

14. There is a need to recognise that EDs have limited capacity as indicated by Ambulance Ramping and Access Block. Tailoring of their role during pandemics for the reality of service delivery must occur.
What are the “IP&C current practices” in ED…

Literature Review (n=23)

- Adherence to Hand Hygiene
- Aseptic technique
- Appropriateness of urinary catheterization
- Aseptic technique during central venous catheter insertion
- ED-placed CVC and related infectious outcomes
- Equipment decontamination

What’s missing from this list?
What else are we really NOT doing?

Ramon Shaban
Breaking the Chain on Infection
Different groups doing different things

- Infection Control Practitioners
- Nurses and Midwives
- School of Nursing and Midwifery
- Emergency Physicians
- General Practitioners
- Intensivists
- Public Health Physicians
- Pharmacists
- Infectious Diseases Physicians
- Allied Health HCW
- Community
- Media
- Triage and ED Nurse
- Paramedics
- Governments
- NGOs

Table 1. Current gaps in emergency management that have infectious disease implications

<table>
<thead>
<tr>
<th>Gaps in emergency management that may affect infection transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Community settings (alternate care sites and shelters) lack infection prevention guidance</td>
</tr>
<tr>
<td>• Health care providers in all settings require more infection prevention education</td>
</tr>
<tr>
<td>• Nonhospital-based health care workers have historically received the least infection prevention education</td>
</tr>
<tr>
<td>• Nonhospital-based health care workers may be the first to recognize or respond to an infectious disease issue during a disaster but have received little to no training in this area</td>
</tr>
<tr>
<td>• Nonhospital-based health care workers lack access to the Health Alert Network and other existing methods of communicating infection prevention-related information</td>
</tr>
<tr>
<td>• Few infection preventionists are subject matter experts in infectious disease disasters, such as bioterrorism and pandemics</td>
</tr>
<tr>
<td>• Infection preventionists need more education related to planning for infectious disease disasters, including triaging patients, social distancing, surveillance methodologies, and others</td>
</tr>
<tr>
<td>• Effectiveness of current electronic surveillance systems for disasters has not been established</td>
</tr>
<tr>
<td>• Public health professionals’ knowledge about infection prevention is not known</td>
</tr>
<tr>
<td>• Surge capacity as it relates to infection prevention issues (such as negative-pressure room/area surge capacity) is lacking and needs to be better defined</td>
</tr>
<tr>
<td>• Crisis standards of care need to be developed and evaluated; may have an impact on infection spread during disasters</td>
</tr>
<tr>
<td>• General public requires more education about the potential infectious disease implications of disasters and strategies they can implement to help prevent the spread of infection</td>
</tr>
</tbody>
</table>
Table 1. Components of an emergency management plan that require IP input

<table>
<thead>
<tr>
<th>Issue/topic requiring infection prevention input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having around the clock infection control coverage</td>
</tr>
<tr>
<td>Facility assessment/hazard vulnerability assessment</td>
</tr>
<tr>
<td>Participation in disaster drills involving a biologic agent</td>
</tr>
<tr>
<td>Strategies for receiving and posting health alert messages within the facility</td>
</tr>
<tr>
<td>Negative-pressure surge capacity</td>
</tr>
<tr>
<td>Safe patient specimen collection procedures</td>
</tr>
<tr>
<td>Patient management</td>
</tr>
<tr>
<td>Food safety</td>
</tr>
<tr>
<td>Water management</td>
</tr>
<tr>
<td>Sanitation control</td>
</tr>
<tr>
<td>Pet management</td>
</tr>
<tr>
<td>Environmental decontamination</td>
</tr>
<tr>
<td>Development of crisis standards of care that affect infection transmission</td>
</tr>
<tr>
<td>Prioritization for limited supplies of antiviral/tissue therapy</td>
</tr>
<tr>
<td>Screening/triage protocols</td>
</tr>
<tr>
<td>Occupational health/safety procedures</td>
</tr>
<tr>
<td>Outbreak investigation coordination</td>
</tr>
</tbody>
</table>

Table 2. Patient management issues that have infectious disease implications and require IP input

<table>
<thead>
<tr>
<th>Patient management issue/topic requiring infection prevention input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening/triaging patients for infection</td>
</tr>
<tr>
<td>Patient decontamination</td>
</tr>
<tr>
<td>Patient transport</td>
</tr>
<tr>
<td>Patient placement and cohorting</td>
</tr>
<tr>
<td>Isolation</td>
</tr>
<tr>
<td>Quarantine</td>
</tr>
<tr>
<td>Supply shortages</td>
</tr>
<tr>
<td>Procedures for obtaining and handling patient specimens safely</td>
</tr>
<tr>
<td>Discharge management</td>
</tr>
<tr>
<td>Postmortem care</td>
</tr>
</tbody>
</table>

Commentary

The value of certification and the CIC credential

Katrina S. Crist MBA a, Barbara S. Russell RN, BSHA, MPH, CIC b, Michelle R. Farber RN, CIC c

a APIC Headquarters, Washington, DC
b Baptist Hospital of Miami, Miami, Fl.
c Mercy Community Hospital, Coon Rapids, MN

<table>
<thead>
<tr>
<th>Infection prevention and control certification examination major content area</th>
<th>Number of examination questions</th>
<th>Percent of examination questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing/controlling the transmission of infectious agents</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>Surveillance and epidemiologic investigation</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Identification of infectious disease processes</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Management and communication (leadership)</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Education and research</td>
<td>14</td>
<td>09</td>
</tr>
<tr>
<td>Employee/occupational health</td>
<td>10</td>
<td>07</td>
</tr>
<tr>
<td>Not disclosed</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Evidence base?

- Growing evidence based demonstrating the value of credentialing
- Certified individuals in the technology industry, regardless of their educational background, outperform their noncertified counterparts.3
- The relationship between certified nurses and patient care quality is well established. High performing organizations with Magnet Status or other specialty certifications recognize that credentialed staff is an important indicator to patients and employers that their professionals are qualified and competent.4
- Studies indicating a correlation between success (e.g., reduced infection rates, improved outcomes) and IP certification are starting to emerge. Most recently, a team from Columbia University, Porgorzelska et al, published study results linking lower methicillin-resistant Staphylococcus aureus infection rates in California hospitals to program directors certified in infection prevention and control.5
- Krein et al indicated that certified IPs may be better prepared to interpret the evidence and promote key infection prevention practices within their organization. 6
Evidence base?

- Another study published several years ago by Krein et al indicated that certified IPs may be better prepared to interpret the evidence and promote key infection prevention practices within their organization. 6
- Additionally, employers are starting to indicate that CIC is preferred or required. Clearly, more research is needed. However, the early indicators are encouraging: certification does, in fact, make a difference.

- American Association of Critical-Care Nurses. AACN Certification Corporation.
Major article

Certification in infection control matters: Impact of infection control department characteristics and policies on rates of multidrug-resistant infections

Monika Pogorzelska PhD, MPHa,*, Patricia W. Stone PhD, RN, FAANb, Elaine L. Larson RN, PhD, FAAN, CICb

aColumbia University School of Nursing, New York, NY
bColumbia University School of Nursing, Mailman School of Public Health, New York, NY

Key Words:
Antibiotic resistant infection
Hospital-associated infections
Infection control

Background: The study objective is to describe infection control policies aimed at multidrug-resistant organisms (MDRO) in California hospitals and assess the relationship among these policies, structural characteristics, and rates of methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) bloodstream infections and Clostridium difficile infections.

Methods: Data on infection control policies, structural characteristics, and MDRO rates were collected through a 2010 survey of California infection control departments. Bivariate and multivariable Poisson and negative binomial regressions were conducted.

Results: One hundred eighty hospitals provided data (response rate, 54%). Targeted MRSA screening upon admission was reported by the majority of hospitals (87%). The majority of hospitals implemented contact precautions for confirmed MDRO and C difficile patients; presumptive isolation/contact precautions for patients with pending screens were less frequently implemented. Few infection control policies were associated with lower MDRO rates. Hospitals with a certified infection control director had significantly lower rates of MRSA bloodstream infections (P < .05).

Conclusion: Although most California hospitals are involved in activities to decrease MDRO, there is variation in specific activities utilized with the most focus placed on MRSA. This study highlights the importance of certification and its significant impact on infection rates. Additional research is needed to confirm these findings.

Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Reforming ACIPC Credentialling for all

• Change in our model
 – 2016: New three-tiered system
 • Primary, Advanced, Expert
• Scope of practice in infection control – all health, allied health and other professionals
• New ACIPC Standards for Practice (2016)
• Designations for employment and appointments
 ▪ Evidence-base for safety and quality in healthcare
 ▪ Nexus of research, education and practice
New Level – Primary ICP

Primary (PICP)

<table>
<thead>
<tr>
<th>Knowledge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIPC Basic IC course or equivalent</td>
<td>submission (role)</td>
</tr>
<tr>
<td>professional development including examples like the Commission Modules</td>
<td>professional review (more senior)</td>
</tr>
<tr>
<td>hand hygiene online modules</td>
<td>RN/EN/NP, RMO, PCA/AIN, scientist, epi, dental, allied, public health/environmental, child care, vet/animal, pharmacy (list the regulated any others can make an application/case for it, submission of a CV with a letter from their employer professions), industry could make a case</td>
</tr>
<tr>
<td>College reflective practice (based on role) - employed for 12 months in the role, a professional review that is prescribed by their manager</td>
<td></td>
</tr>
</tbody>
</table>

Attitude

- 12 months part-time dedicated to IC (tie to professional review)
- a reflective piece about their role over the last 12 months
- identify a mentor to help them with their reflective piece (review it and provide feedback)

Behaviour/Skills

- professional review (prescribed at level or senior and not someone who reports to you)
- submission of a CV
- documentation (registration etc)
New Level – Advanced ICP

Advanced (AICP)

<table>
<thead>
<tr>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Grad Cert in IC (as a named Award), must demonstrate the skill set and attributes of level one as part of it</td>
</tr>
<tr>
<td>3+ years part-time in IC</td>
</tr>
</tbody>
</table>

Attitude

- reflect on their role x 3 pieces (prescribed) adopt the same portfolios as exists now (one mandatory on the role and the other two they can chose from what we currently have)
- demonstrate giving back to the College or the profession/professional service (eg sitting on a committee, research, participating in SIGs, presenting at conferences)

Behaviour/Skills

- professional review (prescribed at level or senior and not someone who reports to you)
- submission of a CV; documentation (registration etc)
New Level – Expert Infection Control Practitioner

<table>
<thead>
<tr>
<th>Expert (EICP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
</tr>
<tr>
<td>Masters (as a named Award) or higher and includes PhD</td>
</tr>
<tr>
<td>5+ years (FTE +)</td>
</tr>
<tr>
<td>Attitude</td>
</tr>
<tr>
<td>reflection x 3 (role, knowledge generation, what has been your contribution to the profession)</td>
</tr>
<tr>
<td>category on giving back/professional service; professional review (prescribed)</td>
</tr>
<tr>
<td>Behaviour</td>
</tr>
<tr>
<td>CV + evidence of registration and employment</td>
</tr>
</tbody>
</table>
Real Reform…

- Professional college and universities working together
- Lessons learned
- Critical gaze that focuses on epidemiologically the scientific basis of infection
- Must bring the parent disciplines together
 - Emergency Care (Medicine, Nursing, Paramedicine), Infection Control, Infectious Diseases, Public Health, Sciences.. etc
- Changing patterns of disease, emerging, remerging
- Infection & infectious diseases are “everywhere”… Alert, but not alarmed
- Re-conceptualize what is meant by a health emergency
- Bring patients and the community with us
- Serious global threat that will bring this home like no other…. Not if, but when…
 - Antimicrobial Resistance
Emergence of antibiotic resistance

First use
First report of resistance

Note: Some of the dates are estimates only.

AMR important?

- Compare changes in mortality in 20th century due to:
 - Non-infectious causes
 - Infectious diseases

- Major contributors to decline in infectious disease mortality
 - Vaccines
 - Antimicrobials
 - Infection control and public health interventions e.g. sanitation

- Antimicrobials are important contributors to human health and well-being

Figure 2. Crude Mortality Rates for All Causes, Noninfectious Causes, and Infectious Diseases

Thank you