Management of common infections

Sonia Koning
Antimicrobial pharmacist
National Centre for Antimicrobial Stewardship
Eastern Health
Overview

- General overview about microbiology
- Interpreting microbiology results
- General principles about antibiotics
- Management of common infections
 - Respiratory tract infections
 - Urinary tract infections
 - Skin infections - cellulitis
General overview of microbiology
Commensal vs Pathogen

• Microorganisms live throughout our body (eg gut, skin)

• Commensal
 • An organism participating in a symbiotic relationship in which one species derives some benefit while the other is unaffected
 • Do not cause disease

• Pathogen
 • An agent that causes disease, especially a living micro-organism such as a bacterium, virus, or fungus
 • Eg E.coli UTI, Staph cellulitis
 • Some sites are normally sterile eg blood, brain, bladder
Identifying bacteria

- Organisms identified and grouped according to:
 - Oxygen requirement: aerobic vs anaerobic
 - Gram stain: Gram positive (purple) vs gram neg (pink)
 - Cell shape
 - Cocci are circular
 - Bacilli are rod-shaped
 - Cocco-bacilli are capsule-shaped

- Final identification can take 3 days
- Usually, the only info available in the first 2 days are gram stain and shape (but this is still useful!)
Identifying bacteria

• Susceptibilities
 – Determine the antibiotics the organism is susceptible to
 – Sensitive (S), Intermediate (I), Resistant (R)
 – Some labs will withhold results to certain antibiotics (e.g. broad spectrum)

• MALDI-TOF: increasingly used, faster identification
Gram positive

Cocci

Staphylococcus
 - *Staph aureus* (coagulase +)
 - *Staph epidermidis* (coagulase –)

Streptococcus
 - *Strep pneumoniae*
 - *Strep pyogenes*
 - *Strep agalactae*

Enterococcus
 - *E. faecalis*
 - *E. faecium*

Bacilli

- Clostridium
- Listeria
- Corynebacterium
- Bacillus
Gram positive

Cocci

Staphylococcus
- \textit{Staph aureus} (coagulase +)
- \textit{Staph epidermidis} (coagulase –)

Streptococcus
- \textit{Strept pneumoniae}
- \textit{Strep pyogenes}
- \textit{Strep agalactae}

Enterococcus
- \textit{E. faecalis}
- \textit{E. faecium}

Bacilli

- \textit{Clostridium}
- \textit{Listeria}
- \textit{Corynebacterium}
- \textit{Bacillus}
Gram positive

Cocci

Staphylococcus
- Staph aureus (coagulase +)
- Staph epidermidis (coagulase −)

Streptococcus
- Strep pneumoniae
- Strep pyogenes
- Strep agalactae

Enterococcus
- E. faecalis
- E. faecium

Bacilli
- Clostridium
- Listeria
- Corynebacterium
- Bacillus
Gram negative

Bacilli
- Klebsiella
- E.Coli
- Enterobacter
- Citrobacter
- Serratia

Cocci
- Pseudomonas
- Proteus
- Salmonella

Coccobacilli
- Haemophilus influenzae
- Bordetella pertussis
- Legionella

(Neisseria spp)
- Neisseria meningitidis
- Neisseria gonorrhoea
Gram negative

Bacilli
- E.Coli
- Klebsiella
- Enterobacter
- Citrobacter
- Serratia
- Pseudomonas
- Proteus
- Salmonella

Cocci
- Haemophilus influenzae
- Bordetella pertussis
- Legionella

Coccobacilli
- Neisseria meningitidis
- Neisseria gonorrhoea

(Neisseria spp)
Gram negative

Bacilli
- E.Coli
- Klebsiella
- Enterobacter
- Citrobacter
- Salmonella

Pseudomonas
- Proteus
- Salmonella

Cocci
- Haemophilus influenzae
- Bordetella pertussis
- Legionella

Coccobacilli
- Neisseria meningitidis
- Neisseria gonorrhoea
Gram negative

Bacilli
- E.Coli
- Klebsiella
- Enterobacter
- Citrobacter
- Serratia

Pseudomonas
- Proteus
- Salmonella

Cocci
- Haemophilus influenzae
- Bordetella pertussis
- Legionella

Coccobacilli
- Neisseria meningitidis
- Neisseria gonorrhoea

Neisseria spp
Interpreting micro results
Layout of a micro report

- **Differs** depending on the type of specimen and the lab

- Status of the report (final, interim)
- Specimen description
- Gram stain (semi-quantitative)
- Culture (semi-quantitative)
- Susceptibilities/sensitivities
 - *Sensitive*, *Intermediate*, *Resistant*
- Sometimes text commentary
What to think through

1. From which site was the sample taken?
 – Sterile site: blood, CSF, bone, joint
 – Non-sterile site: sputum, skin, urine*

2. Don’t just go straight to the susceptibility results
 – Look at the quality of the sample and what else is there
 – The most appropriate antibiotic may not be the one with “S” next to it
 • Side effects, drug interactions, site of infection
Common types of samples

- Urine
- Sputum
- Skin
Urine

- Bladder/urine are supposed to be sterile
- **But**, the method of collection means contamination is possible → MSU
- Look at the leukocyte count (WBC)
 - If leukocytes <100, any organism is probably a contaminant and does not require treatment
- Look at the epithelial cell count
 - High numbers indicate skin contamination
- Look at the concentration of the organisms
 - Generally >10^6 suggests infection but depends on other factors
 - The mere presence of bacteria above a certain limit (even with leukocytes) does not by itself indicate UTI
Examples

FINAL Urine M/C/S Murine - Tests: Urin (Urine M & C)

SPECIMEN
- Specimen Type: Urine Midstream

CHEMISTRY
- pH: 6.5
- Protein: +
- Specific Grav.: 1.007
- Blood: ++
- Glucose: NEGATIVE
- Leucocytes: +++

MICROSCOPY
- Leucocytes: 311 x10^6/L (<2x10^6/L)
- Red Blood Cells: 53 x10^6/L (<15x10^6/L)
- Squamous Epithelial Cells: ++

STANDARD BACTERIAL CULTURE
- 1. Escherichia coli: >10^9 cfu/L

SENSITIVITIES:
- Ampicillin: I
- Augmentin: S
- Cefazolin: S
- Ceftriaxone: S
- Ciprofloxacin: S
- Cotrimoxazole: S
- Gentamicin: S
- Nitrofurantoin: S
- Tazocin: S
- Trimethoprim: S

Lab No

FINAL Urine M/C/S Murine - Tests: Urin (Urine M & C)

SPECIMEN
- Specimen Type: Urine Type Not Stated

CHEMISTRY
- pH: 7.0
- Protein: TRACE
- Specific Grav.: 1.020
- Blood: NEGATIVE
- Glucose: NEGATIVE
- Leucocytes: NEGATIVE

MICROSCOPY
- Leucocytes: 7 x10^6/L (<2x10^6/L)
- Red Blood Cells: 8 x10^6/L (<15x10^6/L)
- Squamous Epithelial Cells: Mil

STANDARD BACTERIAL CULTURE
- 1. Pseudomonas aeruginosa: 10^7 cfu/L

SENSITIVITIES:
- Ceftazidime: S
- Ciprofloxacin: S
- Gentamicin: S
- Meropenem: S
- Tazocin: S
- Timentin: S
Asymptomatic bacteriuria

- Bacteria are often present in significant numbers in the urine in the absence of symptoms of UTI
- Rates of asymptomatic bacteriuria can be:
 - 100% in long-term indwelling catheters
 - 25-50% in female nursing home residents
 - 1-5% in healthy, premenopausal women
- Treatment of asymptomatic bacteriuria provides **no benefit** and may lead to development of **resistance**
- Some exceptions are: pregnant women and prior to TURP procedure
- Where the prevalence of asymptomatic bacteriuria is high:
 - the use of urine microscopy and culture to determine the presence of UTI can be misleading
Urinary catheters

• Would normally expect to see bacteria and WCC in a non-infected patient
• Culture results often unreliable unless taken through a newly inserted catheter
• Cultures (and treatment) should only occur if:
 – Patient is symptomatic
 – Have certain risk factors e.g. immunosuppressed, pregnancy
 – Undergoing a urological procedure
Urinary dipsticks

- Controversial, may be useful in some settings
- **Leukocyte esterase** – indicates presence of WCC in urine
- **Nitrate** – indicates presence of some bacteria
- Issues with accuracy
 - False negatives and false positives
- Not recommended as ‘screening’ in asymptomatic patients
- Routine use in aged care facilities a concern
Sputum

- Non-sterile site
- Common contamination through oropharyngeal tract
- Gram stain is very important
 - Useful for ‘screening’ the sample
 - High numbers of epithelial cells suggests contamination by oral secretions (i.e. a bad sample)
 - Labs may reject these specimens and not culture them
 - Presence of white cells (polymorphs) indicative of real infection
 - If organism seen on gram stain, indicates higher likelihood of real infection
 - Amount of growth is important – “light/moderate/heavy” or “+/++/+++”
Sputum

• Culture
 – Need to correlate this with what was seen on the gram stain
 – For an organism to be deemed significant, it should predominate on both the gram stain and the culture and be a recognised respiratory pathogen
 o e.g. *Streptococcus pneumoniae, Haemophilus influenzae*
 - Other organisms require caution
 o *Staphylococcus aureus* – usually colonisation of the airway
 o *Escherichia coli, Pseudomonas spp.* – often colonisers (especially in hospitals)
 - BUT, clinical judgement is always required
Skin swab

- Non-sterile site
- The decision to treat a skin infection should always be based on **clinical grounds**, not purely on the basis of a wound swab
- Look at the Gram stain:
 - Are there white cells present?
- Pure growth of a single organism increases the likelihood that it is pathogenic
- But, known pathogens are always reported even if there is mixed growth
 - E.g. *Staphylococcus aureus*, *Streptococcus pyogenes*, *Clostridium perfringens*
General principles about antibiotics
Learning about antibiotics…

• … is very difficult!
 – Bacteria names sound the same
 – Antibiotic names sound the same
 – Lots of bacteria can cause lost of different conditions
 – Antibiotic spectra overlap
 • … and is constantly evolving

• DIFFERENT to other medications
 – Destroy a pathogen but minimising toxicity to the host
Terminology

• Antimicrobial
 – Anything that kills (or prevents growth) any microbe
 – Bacteria, viruses, fungi, parasites

• Antibiotic
 – An agent that kills bacteria
 – Ineffective against viruses and fungi
 – Some also have anti-parasitic activity
Empiric vs targeted therapy

- **Empiric therapy**
 - Treating an infection without knowing the causative pathogen
 - Relying on experience and precedent

- **Prophylaxis**
 - Prevention of disease

- **Targeted therapy**
 - Antibiotic regimen determined by identity and antibiotic sensitivities
 - More refined and specific compared to empiric therapy

Both rely on:
- Knowledge of location of disease in the body
- Local epidemiology
Bactericidal vs bacteriostatic

- Bactericidal – kills the organism (eg cell wall rupture)
- Bacteriostatic – stops the growth of the organism (eg prevent protein synthesis)
 - Allows body’s immune system to fight infection
 - Not ideal for immunosuppressed patients
Time vs concentration dependent kill

- Time dependent kill
 - The ability to kill organisms depends on the time above MIC
 → Very important that antibiotics are given on time!
 - Giving higher doses do not necessarily correlate with increased effectiveness (unless protected site)
 - Penicillins, cephalosporins, meropenem, vancomycin
Time vs concentration dependent kill

- Concentration dependent kill
 - Ability to eradicate organisms depends on the concentration above MIC
 - Higher concentration = better activity, BUT increased toxicity
 - Generally want peak concentration to be 8-10 x MIC
 - eg Gentamicin and ciprofloxacin
Patient considerations

Eye
- Abx need to cross BBB
- Sometimes give intravitreal injections

CNS
- Does this antibiotic penetrate the CNS?
- Need high doses

Food effects
- Affect absorption of oral antibiotics
- Enteral feeds
- Nausea, vomiting, diarrhoea

Fluid load
- Infusion fluid
- Salt content of certain antibiotics

Body habitus
- Patient size (weight, height)
- Obese patients may require higher doses
 - Actual body weight
 - Ideal body weight
 - Adjusted body weight

Renal failure
- Dosage adjustments
- Also consider haemodialysis, peritoneal dialysis, CRRT

Liver failure
- May need dose adjustment, or
- Avoid drug altogether
Other considerations

• Drug-drug interactions
 – Azoles eg. fluconazole, voriconazole, posaconazole
 – Rifampicin
 – QT prolongation
 • Ciprofloxacin, moxifloxacin, azithromycin

• Food-drug interactions
 – Rifampicin

• Supplement-drug interactions (calcium, iron, magnesium)
 – Tetracyclines eg. doxycycline, minocycline
 – Fluoroquinolones eg. ciprofloxacin, norfloxacxin, moxifloxacin
The antibiotics
Common antibiotics

Beta lactams
- Penicillins
 - Benzylpenicillin
 - Flucloxacillin/dicloxacillin
 - Amoxicillin/ampicillin
 - Amoxicillin-clavulanate (Augmentin®)
 - Piperacillin-tazobactam (Tazocin®)
- Cephalosporins
 - Cefazolin
 - Ceftriaxone
- Carbapenems
 - Meropenem

Other antibiotics
- Clindamycin
- Ciprofloxacin
- Trimethoprim
- Trimethoprim-sulfamethoxazole (Bactrim®)
- Metronidazole
- Moxifloxacin
- Vancomycin
- Gentamicin
- Rifampicin
What is a beta-lactam?

Beta-lactamase enzyme

Beta-lactam ring

Penicillin

Cephalosporin

Carbapenem
Streptococci
Enterococci
Staphylococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Benzylpenicillin

Anaerobes

Increasing resistance

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

National Centre for Antimicrobial Stewardship
Enterococci
Streptococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Staphylococci
Enterococci

Benzylpenicillin
Flucloxacillin

Anaerobes

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

MRSA
VRE

National Centre for Antimicrobial Stewardship
Enterococci
Streptococci
E. coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Staphylococci
Benzylpenicillin
Flucloxacillin
Amoxycillin/ampicillin

Increasing resistance

Anaerobes

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

MRSA
VRE

Gram negatives
Enterococci
Streptococci
Staphylococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

Anaerobes

Amoxycillin-clavulanate (Augmentin®)
Amoxycillin/ ampicillin
Piperacillin-tazobactam (Tazocin®)

MRSA VRE

National Centre for Antimicrobial Stewardship
Penicillin allergies

- Depends on beta-lactam ring and side chains
- Generally 3 types of allergies
 - Immediate hypersensitivity – avoid all beta-lactams
 - Anaphylaxis, angioedema
 - Delayed hypersensitivity – other beta-lactams usually OK
 - Rash
 - Severe delayed hypersensitivity – avoid all beta-lactams
 - DRESS, SJS
- Penicillin ↔ cephalosporins: 1-10% cross reactivity
- Thought to be less for penicillin ↔ carbapenems
- Other allergies – avoid all beta-lactams
 - Interstitial nephritis
 - Haematological abnormalities
Cephalosporins

- Similar structure to penicillins
- Side effects
 - Hypersensitivity (less than penicillins)
 - Cross reactivity with penicillins in studies suggest 1-10%
 - Other side effects similar to penicillins
- 1st \rightarrow 2nd \rightarrow 3rd \rightarrow 4th generation
 - Increase gram negative cover
 - Lose gram positive cover
Streptococci
Staphylococci
Enterococci
E.coli
Klebsiella
Proteus
Haemophilus
Pseudomonas

 Gram positives

Anaerobes

Increasing resistance

1st generation
- Cephazolin
- (Cephalexin)

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

MRSA
VRE

National Centre for Antimicrobial Stewardship
Streptococci
Staphylococci
Enterococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Anaerobes

Gram negatives

1st generation
- Cephazolin
- (Cephalexin)

3rd generation
- Ceftriaxone

Resistant Gram negs:
- Enterobacter
- Citrobiacter
- Serratia

Increasing resistance

MRSA
VRE
Streptococci
Staphylococci
Enterococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Meropenem

Gram positives

Increasing resistance

Anaerobes

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

MRSA
VRE

Gram negatives

National Centre for Antimicrobial Stewardship
Enterococci
Streptococci
Staphylococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Clindamycin

MRSA

VRE

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

Anaerobes

Gram negatives
Enterococci
Streptococci
Staphylococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Anaerobes

E.coli

Gram negatives

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia

Vancomycin
MRSA
VRE
Enterococcus faecalis
Streptococci
Staphylococci
E.coli
Klebsiella
Haemophilus
Proteus
Pseudomonas

Gram positives

Anaerobes

Moxifloxacin

Ciprofloxacin

MRSA
VRE

Resistant Gram negs:
- Enterobacter
- Citrobacter
- Serratia
Too many antibiotics to cover

• For a great video presentation on principles of antibiotic pharmacotherapy; go to the Australian Commission website

Some useful resources

- **Therapeutic Guidelines: Antibiotic, Version 15**
 - Note that some recommendations are in the Dermatology, Gastrointestinal, Oral and Dental books

- **Australian Medicines Handbook**
 - Anti-infectives chapter has a useful table of antibiotic susceptibilities to common organisms

- **MIMS**
 - Detailed information on PK/PD, microbiology and administration
 - **Caution** with dosing information
Management of common infections
Antibiotic therapy

- Remember – empiric vs directed therapy
- The following treatment options largely discuss EMPIRIC therapy
 - Know common pathogens that cause infection
 - Know your local epidemiology
- Antibiotic treatment should be **guided** by microbiology results
Management of Respiratory Tract Infections (RTIs)
RTIs – what to consider

- Upper vs lower respiratory tract infections
- Exacerbation of airways disease – eg. COPD, asthma
- Influenza
- Pneumonia
 - Community acquired
 - From home
 - From high level care nursing home
 - Hospital acquired
 - Risk of multi-drug resistant pathogen
- Severity of infection
- Allergies
- Is the patient immunocompromised?
- Other medications
Community acquired pneumonia – usual suspects

- *Streptococcus pneumoniae*
- *Haemophilus influenzae*
- *Mycoplasma pneumoniae*
- *Chlamydia pneumoniae*
- *Legionella* spp.
- Viruses!

- High level care NH
 - *Streptococcus pneumoniae*
 - Gram negative bacilli eg. *E. coli*, *Klebsiella*, *Pseudomonas*

- Other
 - *Staphylococcus aureus*
 - *Pneumocystis jiroveci*
 - Fungal
Empiric antibiotic management for CAP

• Outpatient setting
 – Amoxicillin 1g orally TDS OR doxycycline 100mg orally BD
 – Consider amoxycillin-clavulanate for aspiration
 – Cefuroxime 500mg orally BD for mild penicillin allergy

• Hospital setting
 – Benzylpenicillin 1.2g IV QID PLUS doxycycline* 100mg orally BD
 – Ceftriaxone 1g IV daily PLUS doxycycline* 100mg orally BD
 – Ceftriaxone 1g IV daily PLUS azithromycin* 500mg IV daily
 – Moxifloxacin 400mg IV daily

• Consider allergies, clinical history and microbiology results
 *May not require atypical cover if from HLC; history is important!
Empiric HAP antibiotic management

- Depends on risk factors for multi-drug resistance
 - Amoxicillin-clavulanate 875mg-125mg orally BD
 - Ceftriaxone 1g IV daily
 - Piperacillin-tazobactam 4.5g IV QID
 - Moxifloxacin 400mg orally/IV daily
 - +/- Vancomycin according to weight and levels
Management of Urinary Tract Infections
UTIs – what to consider

• Symptoms
 – Asymptomatic bacteriuria
 – Cystitis
 – Pyelonephritis
• Presence of urinary catheter
• Male vs female
 – Prostatitis
• Uncomplicated vs complicated UTI
• Recent travel
• Renal function
• Prophylaxis or recent antibiotic exposure
UTI - Usual suspects

• Uncomplicated UTI
 – *Escherichia coli*, *Staphylococcus saprophyticus*

• Complicated UTI
 – *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae*, *Streptococcus agalactiae* (Group B Strep), enterococci

• Recent travel or recent antibiotic exposure
 – Consider drug-resistant isolates
 – Extended spectrum beta lactamase producing organisms
Antibiotic management

• Obtain microbiology where possible
• Acute cystitis
 – Trimethoprim 300mg orally daily
 – Cephalexin 500mg orally BD
 – Amoxycillin-clavulanate 500/125mg orally BD
 – Nitrofurantoin 100mg orally BD
 – Norfloxacin 400mg orally BD
• Complicated UTI/pyelonephritis
 – Gentamicin (dose according to IBW) IV daily PLUS
 ampicillin/amoxicillin 2g IV QID
 – Ceftriaxone 1g IV daily
 – Meropenem 1g IV TDS
Management of Skin Infections
Skin Infections – what to consider and likely culprits

- **Cellulitis**
 - *Staphylococcus aureus*
 - *Streptococcus pyogenes*
 - Other Streptococci

- **Wound infections**
 - Surgical wounds
 - Non-surgical wounds
 - Contaminated vs non-contaminated
Antibiotic management

- Empirical management of cellulitis
 - Flucloxacillin 500mg orally QID
 - Dicloxacillin 500mg orally QID
 - Cephalexin 500mg orally QID
 - Clindamycin 450mg orally TDS
 - Flucloxacillin 2g IV QID
 - Cephazolin 2g IV TDS
 - Clindamycin
 - Vancomycin IV, dose dependent on weight, renal function and levels
Summary

• It’s not easy!
• Antibiotics are a difficult class of drugs to understand
• Certain bacteria and antibiotics that you should be familiar with
• Ask if not sure!
Clinical Care Standard for AMS
What role do you play?

Nine statements describing best practice for managing a patient who has, or is suspected of having a bacterial infection, regardless of setting.

• **For consumers:** describes the care they can expect to receive

• **For clinicians:** provides support in the delivery of care the patient is expecting

• **For health services:** systems are in place to support clinicians in providing the care that is expected by the patient

Acknowledgements

• Caroline Chen
 – Antimicrobial Pharmacist, NAPS project manager, National Centre for Antimicrobial Stewardship
Thankyou!

• Questions?

THE UNUSUAL SUSPECTS

Stop The Resistance. Prescribe Wisely.

• Email: sonia.koning@easternhealth.org.au
FINAL Respiratory M/C/S Mresp - Tests: Sp (Sputum MC&S)

SPECIMEN
Specimen Type: Sputum

MICROSCOPY

GRAM STAIN

- Macroscopic Description: Mucoaid
- Pus:Epithelial Cell Ratio: >25:10
- Pus Cells: +++
- Squamous Epithelial Cells: +
- Gram negative bacilli: +++
- Mixed upper respiratory tract flora: ++

CULTURE

- Standard culture: +++ Haemophilus influenzae
- ++ Candida krusei
- +++ Mixed upper respiratory tract flora

SENSITIVITIES

- Amoxicillin: S
- Augmentin: S
- Ceftriaxone: S

FINAL Respiratory M/C/S Mresp - Tests: Sp (Sputum MC&S)

SPECIMEN
Specimen Type: Sputum

MICROSCOPY

GRAM STAIN

- Macroscopic Description: Saliva
- Pus:Epithelial Cell Ratio: <25:10
- Pus Cells: +
- Squamous Epithelial Cells: ++
- Gram positive cocci: +++

The ratio of <25:10 pus to epithelial cells seen in the Gram stain suggests salivary contamination

CULTURE

- Standard culture: ++ Mixed upper respiratory tract flora
Skin swab

FINAL Wounds/Tips/Ent/Eye Mpus - Tests: Wound (Wounds & Other M&C)

SPECIMEN
Specimen Type : Swab
Description : Skin Craft Site L. Leg

GRAM STAIN
- Leucocytes : +++
- Epithelial Cells : +++
- Gram positive cocci : ++

CULTURE
- + Enterobacter cloacae complex
- + Staphylococcus haemolyticus

Final report to follow

FINAL Wounds/Tips/Ent/Eye Mpus - Tests: Wound (Wounds & Other M&C)

SPECIMEN
Specimen Type : Wound Swab
Description : Left groin

GRAM STAIN
- Leucocytes : NOT Detected
- No organisms seen

CULTURE
- ++ Mixed Coagulase Negative Staphylococci including Corynebacterium species and Enterococcus faecalis.

COMMENT
Final report to follow

SENSITIVITIES 1
- Clindamycin : S
- Cotrimoxazole : S
- Erythromycin : S
- Fusidic Acid : S
- Oxacillin : R
- Penicillin : R
- Rifampicin : S
- Vancomycin : S
FINAL Urine M/C/S Murine - Tests: Urin (Urine M & C)

SPECIMEN

Specimen Type: Urine Type Not Stated

CHEMISTRY

- **pH:** 5.5
- **Protein:** +
- **Specific Grav.:** 1.021
- **Blood:** +++
- **Glucose:** NEGATIVE
- **Leucocytes:** +++

MICROSCOPY

- **Leucocytes:** 1274 \(\times 10^6 / L \) (\(<2 \times 10^6 / L\))
- **Red Blood Cells:** 391 \(\times 10^6 / L \) (\(<13 \times 10^6 / L\))
- **Squamous Epithelial Cells:** Nil

STANDARD BACTERIAL CULTURE

1. *Escherichia coli* ESBL +ve \(>10^9 \text{ cfu/L} \)

SENSITIVITIES:

1. Ciprofloxacin
2. Cotrimoxazole
3. Gentamicin
4. Meropenem
5. Nitrofurantoin
6. Trimethoprim

ORGANISM 1: This extended spectrum beta-lactamase producing organism will be resistant to cephalosporins, aminoglycosides and all penicillins including augmentin, tazocin and timentin.

FINAL Urine M/C/S Murine - Tests: Urin (Urine M & C)

SPECIMEN

Specimen Type: Urine Catheter Specimen

CHEMISTRY

- **pH:** 7.0
- **Protein:** NEGATIVE
- **Specific Grav.:** 1.011
- **Blood:** NEGATIVE
- **Glucose:** NEGATIVE
- **Leucocytes:** NEGATIVE

MICROSCOPY

- **Leucocytes:** 9 \(\times 10^6 / L \) (\(<2 \times 10^6 / L\))
- **Red Blood Cells:** 4 \(\times 10^6 / L \) (\(<13 \times 10^6 / L\))
- **Squamous Epithelial Cells:** Nil

STANDARD BACTERIAL CULTURE

1. *Enterococcus faecalis* \(3 \times 10^7 \text{ cfu/L} \)

SENSITIVITIES:

1. Amoxicillin
2. Nitrofurantoin
3. Vancomycin

STANDARD BACTERIAL CULTURE

1. *Escherichia coli* ESBL +ve

SENSITIVITIES:

1. Ciprofloxacin
2. Cotrimoxazole
3. Gentamicin
4. Meropenem
5. Nitrofurantoin
6. Trimethoprim

ORGANISM 1: This extended spectrum beta-lactamase producing organism will be resistant to cephalosporins, aminoglycosides and all penicillins including augmentin, tazocin and timentin.